In Vivo and In Vitro Assay to Address Dendritic Cell Antigen Cross-Presenting Capacity

Antigen cross-presentation by dendritic cells is an important pathway to prime CD8 + T cells in infections, cancer, and other immune-mediated pathologies. Particularly in cancer, cross-presentation of tumor-associated antigens is crucial for an effective antitumor CTL response. The mostly accepted cross-presentation assay is to use chicken ovalbumin (OVA) as a model antigen and then utilize OVA-specific TCR transgenic CD8 + T (OT-I) cells to measure the cross-presenting capacity. Here we describe in vivo and in vitro assays to measure the function of antigen cross-presentation using cell-associated OVA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 181.89 Price includes VAT (France)

Softcover Book EUR 163.51 Price includes VAT (France)

Hardcover Book EUR 232.09 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. Rock KL, Shen L (2005) Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev 207:166–183. https://doi.org/10.1111/j.0105-2896.2005.00301.xArticleCASPubMedGoogle Scholar
  2. Ackerman AL, Cresswell P (2004) Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5(7):678–684. https://doi.org/10.1038/ni1082ArticleCASPubMedGoogle Scholar
  3. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578. https://doi.org/10.1038/nri3712ArticleCASPubMedPubMed CentralGoogle Scholar
  4. den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192(12):1685–1696 ArticleGoogle Scholar
  5. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17(2):211–220 ArticleCASPubMedPubMed CentralGoogle Scholar
  6. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100. https://doi.org/10.1126/science.1164206ArticleCASPubMedPubMed CentralGoogle Scholar
  7. Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM, Hakansson UK, Moita LF, Agace WW, Bonnet D, Reis e Sousa C (2012) DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119(25):6052–6062. https://doi.org/10.1182/blood-2012-01-406967ArticleCASPubMedGoogle Scholar
  8. Yamazaki C, Sugiyama M, Ohta T, Hemmi H, Hamada E, Sasaki I, Fukuda Y, Yano T, Nobuoka M, Hirashima T, Iizuka A, Sato K, Tanaka T, Hoshino K, Kaisho T (2013) Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol 190(12):6071–6082. https://doi.org/10.4049/jimmunol.1202798ArticleCASPubMedGoogle Scholar
  9. Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, Rosewell I, Reis e Sousa C (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458(7240):899–903. https://doi.org/10.1038/nature07750ArticleCASPubMedPubMed CentralGoogle Scholar
  10. Helft J, Bottcher J, Chakravarty P, Zelenay S, Huotari J, Schraml BU, Goubau D, Reis e Sousa C (2015) GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c(+)MHCII(+) macrophages and dendritic cells. Immunity 42(6):1197–1211. https://doi.org/10.1016/j.immuni.2015.05.018ArticleCASPubMedGoogle Scholar
  11. Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A, Savina A, Ogier-Denis E, Enninga J, Amigorena S, Leclerc C, Dadaglio G (2018) Mitochondrial reactive oxygen species regulate the induction of CD8(+) T cells by plasmacytoid dendritic cells. Nat Commun 9(1):2241. https://doi.org/10.1038/s41467-018-04686-8ArticleCASPubMedPubMed CentralGoogle Scholar
  12. Canton J, Blees H, Henry CM, Buck MD, Schulz O, Rogers NC, Childs E, Zelenay S, Rhys H, Domart MC, Collinson L, Alloatti A, Ellison CJ, Amigorena S, Papayannopoulos V, Thomas DC, Randow F, Reis ESC (2021) The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat Immunol 22(2):140–153. https://doi.org/10.1038/s41590-020-00824-xArticleCASPubMedGoogle Scholar
  13. Ou P, Wen L, Liu X, Huang J, Huang X, Su C, Wang L, Ni H, Reizis B, Yang CY (2019) Thioesterase PPT1 balances viral resistance and efficient T cell crosspriming in dendritic cells. J Exp Med 216(9):2091–2112. https://doi.org/10.1084/jem.20190041ArticleCASPubMedPubMed CentralGoogle Scholar
  14. Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785 ArticleCASPubMedGoogle Scholar

Acknowledgements

This work is supported by the National Key R&D Program of China (2018YFA0508300) and the National Natural Science Foundation of China (31570863) to C.Y.Y.

Author information

Authors and Affiliations

  1. Department of Immunology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China Pengju Ou, Lifen Wen, Hai Ni & Cliff Y. Yang
  1. Pengju Ou